Multiscale Homogenization with Bounded Ratios and Anomalous Slow Diffusion

نویسندگان

  • GÉRARD BEN AROUS
  • HOUMAN OWHADI
چکیده

Abstract We show that the effective diffusivity matrix D(V n) for the heat operator ∂t − (1/2 − ∇V n∇) in a periodic potential V n = n k=0 Uk(x/Rk) obtained as a superposition of Hölder-continuous periodic potentials Uk (of period Td := R d/Zd , d ∈ N∗, Uk(0) = 0) decays exponentially fast with the number of scales when the scale ratios Rk+1/Rk are bounded above and below. From this we deduce the anomalous slow behavior for a Brownian motion in a potential obtained as a superposition of an infinite number of scales, dyt = dωt − ∇V (yt )dt . c © 2002 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

Diffusion and Homogenization Limits with Separate Scales

We consider the simultaneous diffusion and homogenization limit of the linear Boltzmann equation in a periodic medium in the regime where the mean free path is much smaller than the lattice constant. The resulting equation is a diffusion equation, with an averaged diffusion matrix that is formally obtained by first performing the diffusion limit and then the homogenization one. The rigorous pro...

متن کامل

ANOMALOUS SLOW DIFFUSION FROM PERPETUAL HOMOGENIZATION BY HOUMAN OWHADI Universite de Provence

This paper is concerned with the asymptotic behavior of solutions of stochastic differential equations dyt = dωt − ∇V (yt ) dt , y0 = 0. When d = 1 and V is not periodic but obtained as a superposition of an infinite number of periodic potentials with geometrically increasing periods [V (x)= ∑∞ k=0 Uk(x/Rk), where Uk are smooth functions of period 1, Uk(0)= 0, and Rk grows exponentially fast wi...

متن کامل

Two-Scale Convergence for Locally Periodic Microstructures and Homogenization of Plywood Structures

Abstract. The introduced notion of locally periodic two-scale convergence allows one to average a wider range of microstructures, compared to the periodic one. The compactness theorem for locally periodic two-scale convergence and the characterization of the limit for a sequence bounded in H1(Ω) are proven. The underlying analysis comprises the approximation of functions, with the periodicity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001